Dispersive Material Property

From openEMS

Jump to: navigation, search

Note: This page is under construction. If you have experience with openEMS, please consider to create an account and help improve this page.

Contents

General Usage

 CSX = AddLorentzMaterial(CSX, name, varargin)

with the following parameters:

  • CSX: The original CSX structure
  • name: name of the property
  • varargin: a list of variable arguments

To define the material properties use:

 CSX = SetMaterialProperty(CSX, name, varargin)

with the following parameters:

  • CSX: The original CSX structure
  • name: name of this property (same as above!)
  • varargin: a list of variable arguments to define the properties:

Conventional material parameters:

  • Epsilon: relative electric permittivity for f \to \infty (must be >=1)
  • Mue: relative magnetic permeability for f \to \infty (must be >=1)
  • Kappa: electric conductivity (must be >=0)
  • Sigma: magnetic conductivity (non-physical property, must be >=0)

See also: Material Property

Drude material parameters:

  • EpsilonPlasmaFrequency: electric plasma frequency (fplasma,1, see below)
  • MuePlasmaFrequency: magnetic plasma frequency
  • EpsilonRelaxTime: electric plasma relaxation time (τp, losses, see below)
  • MueRelaxTime: magnetic plasma relaxation time (losses)

Drude higher order parameter (p>1):

  • EpsilonPlasmaFrequency_p: p-th order electric plasma frequency (fplasma,p, see below)
  • MuePlasmaFrequency_p: p-th order magnetic plasma frequency
  • EpsilonRelaxTime_p: p-th order electric plasma relaxation time (losses)
  • MueRelaxTime_p: p-th order magnetic plasma relaxation time (losses)

Lorentz material parameters:

Note: Available only for openEMS >= v0.0.31!!

In addition to the drude parameter, the Lorentz-pole frequency can be defined:

  • EpsilonLorPoleFrequency: first electric Lorentz pole frequency (fLor,1, see below)
  • EpsilonLorPoleFrequency_p: p-th electric Lorentz pole frequency (fLor,p, see below)
  • MueLorPoleFrequency: first magnetic Lorentz pole frequency
  • MueLorPoleFrequency_p: p-th magnetic Lorentz pole frequency

Drude Material

Physical Model & Parameter


\varepsilon(f) = \varepsilon_0\varepsilon_\infty \left( 1 - \sum_{p=1}^N \frac{f_{plasma,p}^2}{f^2-j f/(2\pi\tau_p)}\right) - j\frac{\kappa}{2\pi f}

with the parameter:

  • \varepsilon_\infty the relative permittivity for f \to \infty
  • κ the electric conductivity
  • fplasma,p the p-th "plasma" frequency
  • τp the p-th relaxation time (damping)

Example

CSX = AddLorentzMaterial(CSX,'drude');
CSX = SetMaterialProperty(CSX,'drude','Epsilon',eps_r,'Kappa',kappa);
CSX = SetMaterialProperty(CSX,'drude','EpsilonPlasmaFrequency', 5e9, 'EpsilonRelaxTime', 5e-9);


Lorentz Material

Physical Model & Parameter


\varepsilon(f) = \varepsilon_0\varepsilon_\infty \left( 1 - \sum_{p=1}^N \frac{f_{plasma,p}^2}{f^2-f_{Lor,p}^2-jf/(2\pi\tau_p)}\right) - j\frac{\kappa}{2\pi f}

with the parameter:

  • \varepsilon_\infty the relative permittivity for f \to \infty
  • κ the electric conductivity
  • fplasma,p the p-th drude "plasma" frequency
  • fLor,p the p-th Lorentz pole frequency
  • τp the p-th relaxation time (damping)

Example

CSX = AddLorentzMaterial(CSX,'lorentz');
CSX = SetMaterialProperty(CSX,'lorentz','Epsilon',eps_r,'Kappa',kappa);
CSX = SetMaterialProperty(CSX,'lorentz','EpsilonPlasmaFrequency', 5e9, 'EpsilonLorPoleFrequency', 10e9, 'EpsilonRelaxTime', 5e-9);

Relation to other formulations

  • 
\varepsilon(\omega) = \varepsilon_0\varepsilon_\infty +  \varepsilon_0 \sum_{p=1}^N \frac{(\varepsilon_{dc,p}-\varepsilon_\infty)\omega^2_{p}}{\omega_{p}^2+2j\omega\delta_p-\omega^2}

Conversion:

f_{Lor,p} = \frac{\omega_{p}}{2\pi}

f_{plasma,p} = \omega_{p}\frac{\sqrt{(\varepsilon_{dc,p}-\varepsilon_\infty)}}{2\pi}

\tau_p = \frac{1}{2\delta_p}

κ = 0

Researchers in Physics often adopt a different sign convention, in which they use e iωt for time-harmonic quantities rather than eiωt in engineering. Therefor in some textbook the Lorentz model is:


\epsilon(\omega) = \epsilon_0\epsilon_{\infty} (1+ \frac{\omega_p^2}{\omega_0^2 - \omega^2 - i\gamma \omega})

And the Drude model is:


\epsilon(\omega) = \epsilon_0\epsilon_{\infty} (1- \frac{\omega_p^2}{\omega^2 + i\gamma \omega})

Where ωp is the plasma frequency and ω0 is the plasmonic resonant frequency and γ represents the damping effect in material.